Prevalence of Preeruptive Intracoronal Radiolucency in Chinese Children from Panoramic Radiographs

Yun WANG¹,², Jie CHEN¹, He LIU¹

Objective: To determine the prevalence of preeruptive intracoronal dentin defects in Chinese children from panoramic radiographs, and describe the imaging characteristics of these lesions.

Methods: A total of 707 panoramic radiographs with 8,171 unerupted permanent teeth were examined. Each unerupted tooth was examined with regard to the absence or presence of radiolucencies within the dentin of the crown. The location and size of the lesions were recorded. Also whether the lesion communicated with the pulp was noted.

Results: The prevalence of intracoronal radiolucency in the subjects was 0.85%, and the tooth prevalence of the anomaly was 0.7%.

Conclusion: Panoramic radiographs may help in detecting the preeruptive intracoronal defect.

Key words: intracoronal radiolucency, panoramic radiograph, tooth development

A preeruptive intracoronal radiolucency is a lesion in the crown of an unerupted tooth. On radiographs, these lesions appear as circumscribed radiolucencies within the coronal dentin, and adjacent to the dentino-enamel junction (DEJ)¹. It is usually symptomless and is discovered only as an incidental radiographic finding, or is present at the time of eruption². However, pulpal and periapical diseases related to this lesion were also reported³-⁴.

This condition was first reported in 1941 by Skillen⁵. As the lesions often resemble dental caries, the term ‘preeruptive caries’ has been occasionally applied⁶-⁷. Most of the literature related to these lesions are reports of individual cases. Currently, there are only three studies that have reported on the prevalence of the condition⁸-¹⁰. One of those studies was carried in Malaysia, using panoramic radiographs to diagnose these lesions¹⁰, while the other two were carried out in Australia, utilising bitewing radiographs and panoramic radiographs respectively⁸,⁹.

The aim of the present study was to determine the prevalence of preeruptive intracoronal dentin defects in Chinese children from panoramic radiographs, and to describe the imaging characteristics of these lesions.

Methods

The panoramic radiographs, taken in the period between 2000 and 2009 in the Department of Radiology, Peking University School and Hospital of Stomatology, were examined. Based on medical records, children with systemic diseases, jaw diseases and history of orthodontic treatment were excluded. Photographs with poor quality were also excluded.

Only unerupted teeth were assessed. All unerupted teeth in each radiograph were examined and totalled. Each unerupted tooth was examined with regard to the absence or presence of radiolucencies within the dentin of the crown. The affected teeth were recorded. The location of each lesion was noted with regard to wheth-
er it was on the central, mesial, or distal aspect of the crown. The size of each defect related to coronal dentin thickness was also noted to whether it was within one-third dentin thickness, or two-thirds dentin thickness, or extended through the full dentin thickness. In addition, whether the lesion communicated with the pulp was also noted. The same examination was re-performed by the same paediatric dentist a month later.

Results

All the radiographs selected were from Chinese children aged between 3.6 to 12.5 years old. A total of 707 panoramic radiographs with a total of 8,171 unerupted teeth were examined. Of these subjects, 332 were from males (average age 9.4 years) and 375 from females (average age 9.3 years). Of the radiographs, 13.3% were from the subjects with congenital missing teeth (47 males and 47 females).

Six teeth, from six subjects respectively, showed preeruptive intracoronal radiolucency. Therefore, the subject prevalence was 0.85% (Table 1), and the tooth prevalence was 0.7%. Table 2 lists the features of the lesion in each tooth. In our result, the preeruptive intracoronal dentin defects were most often seen in the mandibular second molar (2 out of 6).

All the preeruptive dentin defects in the present study were located in the dentin, just beneath the DEJ. About 50% of the defects were located on the distal aspect of the unerupted tooth.

The size of the defects was classified relative to the thickness of dentin. It was noted that 3 (50%) were less than one-third relative dentin thickness, 2 (33.3%) were between one-third and two-thirds relative dentin thickness, and 1 (16.7%) had extended to greater than two-thirds of the thickness of the coronal dentin. No communication with the pulp chamber was noted in the affected teeth.

Table 1 Subject prevalence of preeruptive dentin defects

<table>
<thead>
<tr>
<th></th>
<th>Defects Present</th>
<th>No Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>0.53%</td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
<td>1.20%</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>0.85%</td>
</tr>
</tbody>
</table>

Table 2 Radiographic features of preeruptive dentin radiolucencies within the crown

<table>
<thead>
<tr>
<th>Gender</th>
<th>Tooth position</th>
<th>Location of defect in dentin</th>
<th>Size of defect*</th>
<th>Communication with pulp chamber</th>
<th>Periapical lesion of the primary precursor</th>
<th>With congenital missing teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Female</td>
<td>43</td>
<td>Central</td>
<td>II</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2 Male</td>
<td>16</td>
<td>Distal</td>
<td>I</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3 Male</td>
<td>47</td>
<td>Distal</td>
<td>II</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4 Male</td>
<td>17</td>
<td>Mesial</td>
<td>I</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5 Female</td>
<td>37</td>
<td>Distal</td>
<td>I</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6 Male</td>
<td>44</td>
<td>Mesial</td>
<td>III</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* I ≤ 1/3 relative dentin thickness, II ≤ 2/3 relative dentin thickness, III > 2/3 relative dentin thickness
Two of the affected teeth had primary precursors, but no periapical lesion of the primary tooth was noted. The other four affected teeth were permanent molars. Interestingly, one of the subjects was affected with congenital teeth missing (Fig 1). This patient had pictures taken separately before and after eruption. The lesion was finally restored.

Discussion
In a review of the literature, four aetiologies have been proposed to explain the radiolucent lesions within the dentins of unerupted teeth:

- Apical inflammation of primary teeth
- Caries
- Developmental abnormality
- Internal or external resorption

However, the cause of these defects remain unclear. Currently, the widely accepted theory is dentin resorption. The theory is supported by histological studies that showed multinuclear giant cells, osteoclasts, resorptive lacunae, and other chronic inflammatory cells in the lesions.

The present study found that 0.85% of subjects showed preeruptive dentin defects and the prevalence of teeth was 0.7%. The prevalence from our study is therefore much lower than that reported by Seow et al, which was 3% by subjects and 0.5% by teeth, and Nik et al, which was 27.3% by subjects and 2.1% by teeth. The reason for the difference in prevalence is likely to be due to ethnic difference.

In this study it was observed that all the defects were noted in the dentin just below the DEJ. It is similar to the previous reports. However, the defects were more frequently observed in the distal aspect (50%) of the crown, not as reported in the mesial or central aspect. It was reported that the highest prevalence is

Fig 1 The radiolucent dentin defect was located in the unerupted 44. The primary precursor has no periapical lesion. There are 10 teeth that are congenitally missing. The lesion was finally restored when the tooth erupted. a before eruption; b after eruption.
noted in the maxillary and mandibular first permanent molars8,10. While in our study, half of the cases affected the second permanent molar. Congenital missing teeth were also present in one of the patients in this research. Wood7 reported 16 sporadic cases of intracoronal radioluclency, 25\% of which exhibited developmental disturbances in the number of teeth. However, the number of involved children was too small to conclude the relationship of intracoronal radioluclency and congenital missing teeth.

Panoramic radiographs are useful in paediatric dentistry, especially for screening developmental anomalies. As we showed here, panoramic radiographs also play an important role in detecting preeruptive dentin defects. The teeth with preeruptive intracoronal radioluclencies may be mistakenly diagnosed as caries when the teeth erupt into the oral cavity, while regular examination may help to make a definite diagnosis.

Regarding the clinical treatment of preeruptive dentin defects, there is lack of consensus in the management of these lesions. The majority of experts2,4,11,18-22 suggested to surgically expose the affected tooth and use either a permanent or temporary restoration. It was also suggested by some paediatric dentists1,2,23-25 to periodically observe the patients until the affected teeth erupt and then give treatment. Besides, some affected teeth were extracted because of orthodontic or other reasons4,16,17,25,28-30. We think it is important to determine whether the lesion is progressive or static, by taking radiographs periodically. If the lesion is progressive, it is important to surgically intervene and prepare a restoration, in order to arrest the progression of the resorptive process and avoid the involvement of the pulp. Otherwise, intervention could be postponed until eruption and the tooth will not be jeopardized.

Conclusions

The presence of preeruptive intracoronal radioluclency may be detected from panoramic radiographs. The prevalence of the condition by subject was 0.85\% and the tooth prevalence was 0.7\% in Chinese children. Increasing the awareness of this defect is important to detect the lesion and allow timely treatment.

References

