Neurovascular Disturbance Associated with Implant Placement in the Anterior Mandible and its Surgical Implications: Literature Review including Report of a Case

Xin LIANG¹,²,³ Ivo Lambrichts², Livia Corpas¹, Constantinus Politis⁴, Luc Vrielinck⁴, Guo Wu MA³, Reinhilde Jacobs¹

Abstract: Nowadays, oral implants are routinely used for rehabilitation of the edentulous mandible as this procedure is often considered uncomplicated, especially when limiting implant placement to the symphyseal area. Nevertheless, a case of nerve disturbance in the anterior mandible after the implant placement is described. Therefore, surgical, radiographic and anatomic considerations are reviewed in order to encounter the risks for neurosensory disturbance and haemorrhage. It is clear that preoperative radiographic planning of oral implant placement in the anterior mandible should pay attention to the mandibular incisive and lingual canals, besides the mental one, to avoid any neurovascular complications.

Key words: dental implant, surgical complications, neurovascular, anterior mandible

The anterior mandible is mostly considered as an ideal and safe area for rehabilitation of the edentulous mandible with oral implants. Nevertheless, the use of volumetric imaging has allowed the visualising of canal structures in the anterior mandible, which might assume some elaborate neurovascularisation. These findings may be linked to the fact that, in the past two decades, some authors have reported neurosensory disturbances and haemorrhage in the anterior mandible¹⁻²¹. This may underline the need for presurgical assessment of neurovascular structures prior to anterior mandibular surgery. Unfortunately, there are few publications on anatomical variations in dimensions and morphology of these canals²²⁻²⁴. Considering the increased use of oral implants, the occurrence and anatomical variability of the mandibular incisive canal and lingual canal (superior and inferior genial spinal canals and lateral lingual canal) have regained attention to optimise surgical planning and avoid complications²³,²⁴.

In the present report, a case is presented in which oral implant placement caused nerve disturbance, and a further review is carried out to clarify this observation and explain other case reports on neurosensory disturbance after anterior mandibular surgery. A review of the literature is also performed on all documented case reports on haemorrhage and related anatomical structures in the anterior mandible. The article also includes a report on

¹ Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium.
² Department of Basic Medical Sciences, Faculty of Medicine, University of Hasselt, Diepenbeek, Belgium.
³ College of Stomatology, Dalian Medical University, Dalian, P.R. China.
⁴ Maxilla-Facial Surgery ZOL, Hospital Genk, Genk, Belgium.

Corresponding author: Dr Reinhilde Jacobs, Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven, Kapucijnenvoer 7, K.U. Leuven postbox: 07001 - UZ ST RAFAEL, B-3000 Leuven, Belgium. Tel: +3216 33 24 10; Fax: +3216 33 24 10. E-mail: reinhilde.jacobs@uzleuven.be
anatomical variations in the anterior mandible and some suggestions for presurgical planning to avoid complications.

Case Report on Nerve Disturbance

A 61-year-old woman, who had been edentulous for more than 20 years, was referred to the Department of Oral and Maxillofacial Surgery for oral implant placement. The treatment plan included the placement of four implants in the interforaminal region to provide support for a mandibular complete-arch restoration. A panoramic image (Orthophos XG Plus, Sirona, Bensheim, Germany) was applied as presurgical radiological planning. Mandibular surgery was performed under local anaesthesia and four 15 mm length implants were placed in the symphyseal area, according to a two-stage protocol. Two months after wearing the prosthesis, the patient came back with neuralgiform pain in the right lower lip; therefore, the prosthesis was not left in function. Panoramic (Orthophos XG Plus) and cone beam computerised tomography (CBCT) images (Accuitomo®, Morita, Japan) were taken to inspect the region. On the panoramic image after initial implant placement, it is seen that the anterior looping part of the mandibular canal is overlapping with the most distally located implant (Fig 1). Considering the postsurgical nonsustainable pain, the reason may be sought in an implant–nerve contact. The latter assumption is proven by the result of CBCT imaging of this particular region (Fig 2). On the cross-sectional slices of CBCT, it appeared that the right oral implants touched the incisive canal (Fig 2). Therefore, the 15 mm implants at the right side were removed and another two, shorter 10 mm implants were placed. On the fourth post-operative day, the patient was in good health and pain had subjectively, as well as upon further clinical testing, decreased. On a post-operative control 3 weeks after surgery, implants were considered stable with good position and the wound healing. Unfortunately, the pain complaints had restarted and increased and there vitamin B12 was prescribed.

Almost 1 year after the first surgery, the patient consulted again with persistent pain in the right lower lip. The pain was described as cutting like glass. Marcaine (Bupivacaine HCI) was injected in the mental foramen and afterwards the pain disappeared temporarily. Two months later, cryotherapy was performed on the right mental region (-89°C, three times, 2 min each time). At a postoperative control 4 days later, the patient was free from the pain, but again the pain returned 2 weeks later. Subsequently, another series of panoramic and CBCT images (Galileos, Sirona, Bensheim, Germany) were taken. Images showed the distal implant touched the corner of the anterior vertical looping of the mental nerve and the branch of incisive canal (Figs 3 and 4). Oral sensory testing was carried out. The patient’s intra-oral condition was good (Fig 5). Tests showed gums of the distal implant region from the right side being less sensitive than the left side. The right-side lip pain affected eating, speaking and even writing. It was totally insupportable except during the sleep. The strongest feeling of the pain was now qualified as a burning sensation. Few months later, therefore, the patient started to use morphine in order to try killing the pain (12–25 mg/72 h). In the beginning it enabled some pain relief, but the effectiveness decreased over time.
Review of Nerve Disturbance Reports

Previous reports also described that sensory disturbances could be associated with implant placement in the anterior mandible\(^2\)–\(^8\). Based on the analysis of questionnaires, Ellies and Hawker\(^2\) reported 37% of their subjects had an altered sensation after the implantation and 10–15% of them still noted such changes after 15 months. Van Steenberghe et al\(^3\) found that 17% of the patients experienced an altered sensation of the lower lip after implant surgery in the mandible. Kiyak et al\(^4\) noticed such sensory changes in 43% of their study patients after 2 weeks of implant surgery. In the publication of Walton\(^5\), both sensation test and questionnaire analysis were applied and 24% of subjects reported neurosensory disturbances 2 weeks after implant surgery in the anterior mandible, but the problem of such disturbances reduced to about 1% at 1 year after surgery. By using a combination of psychophysical methods (soft brush, two-point discrimination, pain perception and temperature sensitivity), Bartling et al\(^6\) found only 8 out of 94 study subjects had altered sensation after oral implant placement in the mandible. Wismeijer et al\(^7\) described an altered sensation in 11% of their subjects after 10 days of the implant surgery by using questionnaire analysis, and 10% of them still suffered this disturb at 6 months after surgery. On the other hand, Abarca et al\(^8\) evaluated the past and present neurosensory disturbances with regard to immediately loaded implants in the edentulous anterior mandible. A questionnaire and a psychophysical approach were used in their study. One-third of the subjects reported a neurosensory disturbance after the surgery, and 15% still complained 8–21 months afterwards\(^8\).

Review of Haemorrhage Clinical Case Reports

A review of the literature shows that 12 references have described 13 previous cases of haemorrhage in the floor of the mouth and potentially life-threatening upper airway obstruction after the placement of implants into the anterior mandible\(^10\)–\(^21\). Nine females and four male patients from 42 years to 80 years were included in the previous reports (mean age: 53.5 years). A total of 38 implants were placed in nine completely and four partially edentulous mandibles. One of them is a single abutment implantation in a fully dentate mandible. Two reports were related to the immediate implant placements. The treatment plans included single restoration\(^20\), fixed prostheses\(^12,15\), partial dentures\(^18\), and overdentures\(^13,14,21\). The majority of haemorrhages were related to the implant length (≥15 mm) or the depth of osteotomy preparations\(^10\)–\(^21\). According to the haemorrhaging onset time, three cases happened during the
implant osteotomy preparation10,14,19, three cases during the implantation15,16,21, two cases during the suturing13,18, two cases after 30 min17,20 and three cases after 4–6 h11,12,14. There is only one case that was successfully managed with airway observation14. To prevent life-threatening haemorrhage and airway obstruction, all the other cases were handled adequately by controlling airway passage and stopping haemorrhage. Airway control was successful in most patients with naso-or oro-tracheal intubation10–15,17. In another five cases, the airway passage was enabled using tracheostomy16,18–21. For controlling haemorrhage, surgical exploration of the floor of mouth was performed in most of the cases for haematoma evacuation and isolation11–18,20,21, except for two cases that were handled conservatively10,19. All patients were discharged home after 1 to 11 days and recovered well.

Anatomical Considerations

Mandibular incisive canal and its contents

Except for mental nerve, the incisive nerve is often detected as a second terminal branch of the inferior alveolar nerve, which is an intraosseous course in a so-called mandibular incisive canal. This canal is located anteriorly to the mental foramen from both left and right sides of the mandible25–27 (see Figs 4 and 6). However, many clinicians neglect the presence of a real mandibular incisive canal. Gray’s Anatomy mentions that the mandibular canal gives off two small canals, mental and incisive; the mental canal swerves up, back and laterally to the mental foramen, whereas the mandibular incisive canal continues below the incisor teeth28. Conventional radiographs usually fail to show such a canal29. Panoramic radiographs can be used for visualization of the mental foramen and a potential anterior looping, but not for locating the mandibular incisive canal30. Tomographic imaging allows exploration for the presence and course of an anterior prolongation of the mandibular canal24,31. Both CBCT and spiral CT images can identify this canal by viewing in three dimensions30,32,33.

A high-resolution MRI study by Jacobs et al33 indicated that the mandibular incisive canal contains a true neurovascular bundle with nerve structures, having a sensory function. This finding confirms that the canal contains the intra-osseous extension of the inferior alveolar neurovascular bundle, supplying the mandibular anterior teeth. In the presently reported case, post-operative CT images revealed that implants had been placed inside of the mandibular incisive canal and were touching the incisive nerve which runs through the canal.

Superior and inferior genial spinal foramina, lateral lingual foramina and their bony canal contents

Lingual foramina and canals are the other important anatomical landmarks, located in the mandibular interforaminal region. These foramina included the superior and inferior genial spinal foramina and lateral lingual foramina. The superior one is at the level of, or superior to, the genial spine; the inferior one is below to the genial spine; and the lateral one is on the left or right side of the midline (Figs 7–9). This has been found in 85 to 99% of mandibles22,34–36.

The existence and contents of these foramina are seldom described in the general anatomy text-
books28,37–41, nor in dental anatomy textbooks42–44. However, these canals are well identified in textbooks related to dental radiographic anatomy, because of the corticalised contour32,45–47. Acquiring proper knowledge on foramina could be important for presurgical considerations of implant placement in the midline of the mandible48. In previous dissection reports, some anatomical variations and anastomoses have been discovered. A branch of the lingual artery and vein and lingual nerve, a branch of the mylohyoid nerve together with branches or anastomoses of the sublingual and/or submental artery and vein have been identified upon entering those foramina. This artery could be of sufficient size to provoke a haemorrhage intraosseously or in the

\textbf{Fig 7} In a dry mandibular specimen, there is a superior genial spinal foramen (see arrow F) and several lateral lingual foramina located on both left and right sides in the mandibular anterior region.

\textbf{Fig 8} CBCT images show both superior and inferior genial spinal foramina from frontal view (see arrows on image of lower left) and a bony canal from sagittal view (see arrow on image of lower right).
connective soft tissue which might be difficult to control. A high-resolution MRI study clearly established that the contents of these canals have a neurovascular nature. Liang et al. used qualitative and quantitative MRI images for microanatomical assessment which was also confirmed by the histological evaluation. These findings may be considered as an important link to the case reports on haemorrhage and/or sensory disturbances after anterior mandibular surgery.

Discussion

Sensory disturbances
Sensory disturbances can be caused by direct trauma, indirect trauma (e.g. pressure by a haematoma in the canal) or chronic stimulation to the mandibular incisive canal bundle or lingual canal bundle after implant placement in the interforaminal region. After direct trauma, which can occur if the implant is placed through the bony canal, the nerve ending may get retrograde degeneration in most cases, because the nerve running in the canal is a terminal ending of the nerve and the size is quite small. Indirect trauma can be caused by a haematoma in the canal affecting the mandibular incisive canal bundle and spreading to the main mental branch. As this blood clot cannot be evacuated, the swelling compresses the nerve and leads to trauma by compression neuropathy. Sensory disturbances might also be related to chronic stimulation. If the implant is situated beside or on top of the nerve, then the nerve can be stimulated recurrently each time when biting or chewing. It is likely that such chronic stimulation may, therefore, end up as chronic neuropathy.

Hypoaesthesia, anaesthesia and paraesthesia may display as a sensory disturbance. In some cases the sense of pain is mainly disturbed, but in others the tactile and temperature senses are also disturbed. All these changes can be transient or persistent, depending on the degree of damage to the nerve tissue involved.

Haemorrhage
Extensive haemorrhage in the floor of the mouth may occur during implant placement in the mental interforaminal region and may cause acute airway obstruction. The haemorrhage not only can be induced by instrumentation through a perforation of the lingual cortical plate, but may also be caused by touching and damaging the neurovascular bony canals, like lingual canals. There are many vascular anastomoses in the anterior region of the mandible and rich vascular supplies to the lingual periosteum. The presence of lingual bony canals with an assumed vascular content may indeed present a risk for bleeding complication, such as during implant surgery. Madeira et al. reported that the canal content was neurovascular with branches of the mylohyoid nerve and sublingual artery. Ennis stated that the lingual foramen transmits a branch of the incisive artery to anastomose with the sublingual artery. White and Pharoah noted that the foramina and canals are the termination of the incisive...
neurovascular branch of the mandibular canal. In the study of Kawai et al, the submental artery was found to send complex branches to the lingual foramen, which passed through the canal and connected with the incisive branch and mental artery in the anterior region of the mandible. Liang and co-workers confirmed the existence of neurovascular contents by high-resolution MRI and histology. They also found that the lingual canal neurovascular contents may relate to the location of the canal and anatomical variations. In these studies, a lingual nerve branch innervates the superior canal, while a branch of the mylohyoid nerve enters the inferior and lateral canal. Vascular supplies from lingual artery, sublingual artery and submental artery are anastomotic for superior, inferior and lateral foramina. They may evidently have a different neurovascular supply considering their differential location below or above the mylohyoid muscle. Importantly, the vascular size and canal diameter have often been identified as large enough to cause significant damage and bleeding when touching.

Surgical implications and suggestions for presurgical planning to avoid surgical complications

To prevent surgical complications of anterior mandibular surgery, a careful preoperative lingual probing or elevation of the periosteum were mostly suggested by previous studies to provide a sufficient and safe view of the anatomy. Normally, surgeons regard a longer implant as desirable to ensure the stability of the osseointegration. However, there is no clinically proven advantage for implants as long as 18 mm. Ten Bruggenkate et al proved a successful osseointegration in the rehabilitation of resorbed mandibles by using 6 and 8 mm short implants. Most of the former complications were coupled to placement implants with length of 15 mm or longer. Therefore, implants with length shorter than 15 mm might be advisable to place in the anterior mandible. The latter may also help to avoid thermal trauma, as the symphyseal area is often dense and long implants may cause more heating. In addition, the drilling angulations should be adjusted according to the remaining socket. Anyway, a good prerequisite of volumetric imaging (e.g. CBCT imaging) is necessary for such implant surgery, because it can give better information of those pivotal anatomical structures and can definitely help the surgeon to plan implant length or angulations. Considering the anatomical considerations and the aforementioned limitations, the present case, therefore, clearly demonstrates that two-dimensional imaging does not yield enough information to guarantee avoiding surgical complications in all cases.

Three-dimensional imaging, therefore, is a prerequisite to avoid surgical complications. Presurgical three-dimensional imaging may assist the surgeon in evaluating bone size, morphology and quality of the planned implant locations. It may also help to detect the presence and location of vital neurovascular bundles.

Cross-sectional imaging is thus recommended for presurgical planning, even when dealing with a case in this anterior mandible, previously often considered as a safe and uncomplicated surgical area. For such planning, cross-sectional imaging is recommended. In the past, cross-sectional imaging was performed using spiral tomography, but considering the introduction of volumetric imaging offering far more information at similar dose levels, it is clear that CBCT has become the method of choice for such presurgical planning techniques. Compared with spiral CT scan, CBCT scan can provide a detailed three-dimensional reconstruction of the bony morphology at a lower dose and cost than spiral CT. Besides, the mandibular incisive canal, the superior and inferior genial spinal foramina, the lateral lingual foramina and their bony canals can be clearly depicted on CBCT images. This underlines the recommended use of low-dose CBCT imaging for implant planning as an accurate method. Conventional panoramic radiography may be helpful to establish a treatment plan prior to implant surgery if no other previous images are present.

Conclusion

Although nerve disturbance after implant placement is rare, the present case report has shown that, if happening, it can result in life disordering complications. The haemorrhage case reports summarised in the review illustrate another life-threatening complication of implant placement in the mandibular interforaminal region. Therefore, the anterior mandible should be reconsidered as encountering risks for neurovascular disturbance instead of being denoted as an ‘easy’ or ‘safe’ surgical area. A careful preoperative radiographic assessment is recommended, with CBCT as the method of choice for the presurgical planning.

References

