Currently, clinical probing and intraoral radiography are the main diagnostic tools for periodontal diseases. However, studies have shown limitations for both techniques in assessment of periodontal bone loss1-11. The major limitation or drawback is that neither technique provides valid three-dimensional (3D) information for assessment as well as classification of periodontal bone defects, especially infrabony defects and furcation involvements. The infrabony defects are also referred to as bony craters, which are usually saucer-shaped.*

For descriptions of bony defects, the general term crater is used in this article, which can refer to 1-walled, 2-walled, 3-walled or 4-walled defects or any combination of these.
shaped with 3 or 4 bony walls remaining. Furcation involvements refer to the periodontal defects among the multi-rooted teeth where roots diverge. Correct interpretations of these bony defects are crucial to predict prognoses of periodontally affected teeth as well as to make correct treatment planning. Different types and degrees of the bone defects often require different treatment procedures. Because of the limitations of the existing methods and the 3D nature of many periodontal bone defects, the current diagnostic approach needs further improvement.

Cone beam computed tomography (CBCT, or dental CT) is a recently developed imaging modality. It can provide 3D information of dentition as well as its supporting structures. Compared with conventional CT, CBCT considerably reduces radiation exposure to patients. Application of this new imaging modality in addition to existing 2D digital intraoral radiographs may offer new perspectives on periodontal diagnosis and treatment planning.

The purpose of the present study was to explore the diagnostic value of CBCT in the determination and classification of the 3D topography of periodontal bone craters and furcation involvements. We hypothesised that CBCT would allow more accurate assessment of the periodontal bone defects than intraoral radiography. The present study was a continuation of our previous research on assessment of linear bone loss with CBCT.

Materials and Methods

Forty-one periodontal bony defects, 19 bony craters and 22 furcation involvements, from two adult human skulls, a cadaver head and a dry skull, were evaluated using intraoral digital radiography (charged coupled device (CCD) sensor, Schick Technologies, NY, USA) and CBCT (I-Cat, 12 bit, Imaging Sciences International, Hatfield, PA, USA). The maxilla and mandible of the cadaver head were fixed with 10% formalin and used as the clinical subject. The adult human dry skull was covered with a soft tissue substitute, Mix D, and used as a simulation.

For the intraoral protocol, images were obtained with a size #2 CCD intraoral digital sensor and a direct current (DC) X-ray unit (Heliodent DS, Sirona Dental Systems LLC, Charlotte, USA) combined with a rectangular (4 cm x 3 cm) collimator (Universal Collimator, RINN Corporation, Illinois, USA). The focal-film distance was 30 cm. The paralleling technique was applied in a standardised exposure set-up with film holding system (XCP, RINN Corporation, Illinois, USA) and standardised bite blocks (Fig 1). The exposure setting was 60 kVp with 0.28 mAs (40 ms x 7 mA).

For CBCT scanning, the occlusal plane of the jaw bones was positioned horizontally to the scan plane and the midsagittal plane was centred. The field of view (FOV) or the beam diameter at the surface of the image receptor (beam height) was adjustable and set to visu-
Alise the entire jaws, giving between 54 and 159 slices of 0.4 mm thickness (between approximately 20 mm and 60 mm beam height). Images were obtained using a low-dose protocol, of 120 kVp and 23.87 mAs with a typical voxel size of 0.4 mm (Fig 2).

Assessment of the periodontal bony defects using both imaging modalities was by three observers (a postgraduate student in radiology and two radiology faculty members, Temple University School of Dentistry, Philadelphia, USA). Each of them in turn viewed the images in a darkened room on a notebook with 17 inch LCD monitor and high screen resolution (1440 x 900 pixels). Intraoral 2D images were displayed with the Emago advanced, V3.5.2 software in Tagged Image File Format (TIFF). Dedicated filtering and grey scale enhancement methods were allowed to analyse the selected sites. CBCT images were viewed with the I-CAT software (Xoran CAT V2.0.21, Xoran Technologies Inc. Michigan, USA, 2005). Analysis was carried out using coronal, sagittal and axial slices of 0.4 mm each, for the selected teeth. Measurement tools on both programs were used for furcation classification.

A group of 10 teeth in the molar region of the maxilla and mandible, containing 41 sites, including mesial and distal 3D crater defects and vestibular and oral (for maxillary molars vestibular, mesial and distal) furcation involvements, was selected for comparison and statistical analysis. Physical descriptions on the skull models were considered as the gold standards for further accuracy assessment of both imaging modalities. For the cadaver jaws, the gold standard was obtained after image acquisition, by flap surgery to allow physical description and classification. Furcation classification was carried out using a periodontal probe. For the dry skull, the gold standard was obtained prior to adding soft tissue substitute and image acquisition.

Statistical analysis

Bone defects and crater involvements of the selected sites, observed on the digital intraoral and CBCT images, were compared with the gold standard. Imaging methods and observers were used as independent variables and bone defects and furcation involvements as the dependent variables. The latter were classified by an ordinal scale from 0 to 4 (no defect, 1-walled, 2-walled, 3-walled and 4-walled) and from 0 to 3 (no furcation involvement, class I, class II and class III) respectively. The gold standard was obtained by averaging the scores of two observers. Intra-class correlation showed no observer effect for these scores.

Because of the ordinal nature of the acquired data, nonparametric statistics were used for the analyses. The observer effect for both dependent variables was tested with the Kruskal-Wallis test and showed no significant difference among the three observers (p > 0.05). A 50% repeat of measurements was done at an interval of one week and a high reliability was found amongst every observer (interval of 0.986-0.997 with 95% con-
fidence and a single measure intra-class correlation coefficient of 0.987). Those measurements were then averaged for further calculations (see Table 1).

The Kruskal-Wallis test was used to compare the gold standard with 2D intraoral and 3D CBCT images in assessment of the periodontal bone defects. The statistical analyses were done with SPSS V.13.0 statistical software (SPSS In., Chicago, USA).

Results

Craters

Table 1 is a summary of the observations of the selected crater sites. The gold standard versus 2D intraoral digital imaging and 3D CBCT assessment of the crater sites and their mean values are shown. The 0 values in the gold standard, representing absence of craters and furcation involvements, were excluded from the statistical analy-
ses as no different values were scored with both techniques, thus yielding 100% specificity for this variable for 2D and 3D imaging.

The gold standard versus 2D digital intraoral images and 3D CBCT were compared using the Kruskal-Wallis test. There was a significant difference ($p = 0.001$) between the gold standard and the imaging modalities. Further assessment through the Mann-Whitney test showed that this was due to the 2D intraoral imaging technique, which was significantly different from the gold standard ($p = 0.001$; Table 2). Table 2 also demonstrated the significant difference ($p = 0.002$) between the 2D and the 3D imaging techniques in assessment of craters. Fig 3a is a graphic representation of the values in Table 1, showing frequency counts of gold standard, 2D CCD and 3D CBCT images.

From the results in Table 1, we found that for intraoral digital imaging, 31% of the defects were not detected. Only 25% of the observations had the same class as the gold standards. A tendency to overestimate the crater involvement was seen in 62% of the sites and only 13% were underestimations. For CBCT however, all crater involvements were visible. Observations deviated only slightly: 12% were overestimations and 88% were classified correctly. We found no significant difference between the gold standard and the 3D imaging modality ($p = 0.374$, Table 2).

Furcation involvement

Table 3 shows the observations of the selected furcation sites. The ordinal scale was adjusted to a 0 to 3 scale (see Fig 3b) for statistical analyses. Again the 0 values of the gold standard were excluded from the statistical analyses. However, for this variable, the Kruskal-Wallis test and subsequently the Mann-Whitney test revealed no significant differences among the gold standard and two imaging modalities. Hence, the data of both variables were explored and revealed normal variations in the me-

<table>
<thead>
<tr>
<th>Furcation</th>
<th>Gold standard</th>
<th>2D CCD</th>
<th>3D CBCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandibular right first molar vestibular</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Mandibular right first molar oral</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Mandibular right second molar vestibular</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mandibular right second molar oral</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mandibular right third molar vestibular</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mandibular right third molar oral</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary right first molar mesial</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maxillary right first molar distal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary right first molar vestibular</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maxillary right second molar mesial</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary right second molar distal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary right second molar vestibular</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mandibular left first molar vestibular</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mandibular left first molar oral</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mandibular left second molar vestibular</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mandibular left second molar oral</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Maxillary left second molar mesial</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Maxillary left second molar distal</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Maxillary left second molar vestibular</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Maxillary left third molar mesial</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary left third molar distal</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maxillary left third molar vestibular</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
dians of the crater data (gold standard = 2, CCD = 1 and CBCT = 2), but a constant value of 1 for the furcation involvement data. This limitation explained the unexpected results for furcation involvements and therefore further analyses including cross-tabulations and Chi-square tests of the furcation involvement data were made. Table 4 shows that based on frequency counts, a significant difference was found for the furcation involvement variable between the 2D CCD images and the gold standard (p = 0.006).

With intraoral CCD images, 58% of the furcation involvements were detectable. Among these, only 25% were correctly classified and the misclassification counts were as high as 75% (33% overestimations and 42% underestimations). Furthermore, it was not possible to distinguish vestibular from oral furcation involvements. For CBCT, 100% of the furcation involvements were visible and they were all correctly classified. Based on these frequency counts, no significant difference was found (p = 1.000; Table 4) between the gold standard and

<table>
<thead>
<tr>
<th>Variable</th>
<th>GS vs 2D CCD</th>
<th>GS vs 3D CBCT</th>
<th>2D CCD vs 3D CBCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crater</td>
<td>11.119</td>
<td>0.277</td>
<td>16.250</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>1.000</td>
<td>0.010</td>
</tr>
<tr>
<td>Furcation</td>
<td>11.588</td>
<td>0.000</td>
<td>18.300</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>1.000</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 4. Chi-square (χ^2) tests of both variables show that there were significant differences between 2D CCD image and the gold standard, as well as between 2D CCD and 3D CBCT in assessment of craters and furcation involvements. No significant difference between 3D CBCT and the gold standard was found.
3D CBCT images in assessment of furcation involvements.

Discussion

The recent attention for CBCT requires validation of this technology for diagnostic purposes. For periodontal diagnosis, the present results revealed a better depiction of bone craters and furcation involvements from CBCT than from intraoral images. Also, vestibular and oral bone defects, as well as maxillary trifurcations, were easily assessed by CBCT images. The maxillary trifurcations are difficult to see on intraoral images, despite multiple efforts to optimise the diagnostic value of the 2D images. In the present study only 69% of the crater defects and 58% of the furcation involvements were identified from the intraoral CCD images. In contrast, there was 100% detection of both defects on CBCT. These findings are comparable with previous studies. Misch et al14 found that only 67% of the artificially created infra-bony defects were diagnosed on intraoral images. Fuhrmann et al9 found that 21% of artificial furcation involvements were identified on dental radiographs, and 100% through high resolution CT.

Certainly this more accurate assessment by CBCT is mainly due to the fact that CT technology provides multi-planar slices and 3D information. The innovative cone beam technology of this imaging technique additionally allows lower radiation doses, which will further increase its usage. The radiation dose of CBCT was reported to be up to 15 times lower than conventional CT27. Recent studies reported that CBCT systems only require 4 to 15 times the dose of standard panoramic images26, or only the dose of a film-based full mouth radiographic examination (FMX)27. An FMX in the USA varies from 18 to 22 intraoral radiographs with a dose range of 13–100 μSv32,33. Effective dose of CBCT, starting at 36.9 μSv, was within the range of the FMX26,27. Furthermore, Ludlow et al26 reported on dose reduction when using smaller FOV examinations. Since the radiation dose of CBCT is lower than conventional CT, there is growing concern of over-use of CBCT.

Fig 4 Three-dimensional reconstruction images of the same molar region as in Fig 2, using different software packages.
and its radiation safety. In the authors’ opinion, the use of CBCT should still be carefully justified (diagnostic benefit and risk are balanced) and the ‘as low as reasonably achievable’ (ALARA) principle should be followed. In the present study, a low dose protocol of CBCT (23.87 mAs and 0.4 mm voxel size) was used. More studies with larger sample sizes should determine ideal exposure settings, which will optimise the image quality and lower the radiation exposure further.

Currently used software of CBCT requires a certain amount of experience for optimal assessment of anatomical features. The growing possibility of real 3D reconstruction of the CBCT images by more precise algorithms will further improve this by making it easier to interpret the three dimensions of crater and furcation involvements. Fig 4 shows 3D reconstruction images and manipulations of one of the selected regions (see Fig 2) on the cadaver jaws.

In the present study, we confirmed the hypothesis that CBCT would allow more accurate assessment of the periodontal bone defects than intraoral radiography. Dedicated periodontal filtering may aid bone level measurements but not craters and furcation assessments. When compared with CBCT, digital intraoral radiography is still a 2D technique with limitation of presenting 3D periodontal defects, particularly with regard to the buccal and lingual aspects of bone loss. Our observers were not able to distinguish vestibular from oral bony defects and detect the maxillary trifurcations by using 2D images.

While the use of digital intraoral radiography has not been found to be superior to conventional radiography for periodontal linear measures, it cannot be ignored that it offers at least two essential benefits: radiation dose reduction and image analysis for improved bone diagnostics. With regard to the first benefit, we attempted to reduce the intraoral radiographic dose as much as possible while keeping full diagnostic capabilities. The methods and exposure settings used in the present study have been tested and validated in our previous report.

The second benefit of digital intraoral images may allow for image optimisation and quantification, such as contrast enhancement, periodontal filtering and digital subtraction. These dynamic functions may aid periodontal diagnosis. Nonetheless, it is widely accepted that the 2D nature of the images, whether they are conventional or digital, prevents a diagnosis of the entire spatial bone defect. A 3D diagnosis has the potential for better assessment of prognosis of individual teeth, thus providing more efficient treatment planning.

In the preceding part of this study, measurements of linear bone loss using CBCT images were found to be similar to intraoral CCD assessment. However, because of the lower resolution, CBCT were scored lower than the intraoral images for bone quality and delineation of lamina dura. This indicated that the current CBCT system could not replace intraoral radiography for periodontal assessment. A combination of both imaging modalities could benefit periodontal bone assessment and assist pre-surgical treatment planning. We therefore suggest that the currently tested model of CBCT should only be used for relatively complex periodontal treatment planning, such as surgery of complex periodontal defects and the potential use of dental implants.

All observations in this study were made using a general classification system. Periodontal defects were given the general name of crater and classified as 1-walled, 2-walled, 3-walled or 4-walled in the most apical depth of the lesions. Therefore, the common classification proposed by Karn et al was followed, avoiding the sometimes difficult nomenclature of crater, trench, moat, ramp, plane, or combinations of these. Furcation involvements were classified by looking at the horizontal component proposed by Hamp et al (class I, II and III) and the vertical component proposed by Tarnow et al (subclass A, B and C). As there is discrepancy of the assigned ordinal data to this scale, only the main classes were used for the statistical analyses. The classification proposed by Rosenberg et al for maxillary trifurcations was not included as the three bifurcations were assessed separately. Most of these classifications could have been based on clinical, surgical or 2D radiological information.

Finally, validation of these imaging modalities has been achieved by comparison of detectability of anatomical or pathological features, but the ultimate test would be how much these features affect treatment decisions and treatment outcome. Therefore, further long-term clinical studies are required.

Conclusions

CBCT allowed more accurate assessment of bone craters and furcation involvements than digital intraoral radiography. This study might help in establishing selection criteria for different imaging modalities in assessment of periodontal bone loss and further assist in periodontal diagnosis and treatment planning.

Acknowledgements

We would like to thank Roslyn Gorin, MS, Statistical Application Manager, Department of Computer Sciences, Temple University, Philadelphia, USA, for her assistance with the statistical analyses.
References

